Accès gratuit
Numéro
Therapie
Volume 67, Numéro 4, Juillet-Août 2012
Page(s) 367 - 374
Section Modélisation / Modeling
DOI https://doi.org/10.2515/therapie/2012042
Publié en ligne 1 novembre 2012
  1. http://www.fyma.ucl.ac.be/files/Euler-Bernoulli.pdf [Google Scholar]
  2. Massol J, Zylberman M, Goehrs JM, et al. Use of the foreign studies: transposition of the results, prediction of the therapeutic effects in the french population, modelling of the public health interest. Therapie 2006; 61: 481-9, 491-9 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Launay O, Hoch D, Saint-Sardos C, et al. Vaccines: Specific features, simulation of impact and medico-economic modelling. Therapie 2010; 65(4): 357–65 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Bernard GR, Vincent JL, Laterre PF, et al. The Recombinant Human Activated Protein C Worldwide Evaluation in Severe Sepsis (PROWESS) Study Group, Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344: 699-709 [CrossRef] [PubMed] [Google Scholar]
  5. Aegerter P, Auvert B, Buonamico G, et al. Organization and quality control of a clinical database on intensive care medicine in central and suburban Paris. Rev Epidemiol Sante Publique 1998; 46(3): 226-37 [PubMed] [Google Scholar]
  6. Riou França L, Launois R, Le Lay K, et al. Cost-effectiveness of drotrecogin alfa (activated) in the treatment of severe sepsis with multiple organ failure. Int J Technol Assess Health Care 2006; 22(1): 101-8 [PubMed] [Google Scholar]
  7. Denis P, Lafuma A, Berdeaux G. Medical outcomes of glaucoma therapy from a nation wide representative survey. Clin Drug Investig 2004; 24(6): 343-52 [CrossRef] [PubMed] [Google Scholar]
  8. Denis P, Lafuma A, Berdeaux G. Medical predictive factors of glaucoma treatment costs. J Glaucoma 2004; 13(4): 283-90 [CrossRef] [PubMed] [Google Scholar]
  9. Nordmann JP, Lafuma A, Deschaseaux C, et al. Clinical outcomes of glaucoma treatments over a patient lifetime: a Markov model. J Glaucoma 2005; 14(6): 463-9 [CrossRef] [PubMed] [Google Scholar]
  10. Nordmann JP, Lafuma A, Berdeaux G. Modelling the lifetime economic consequences of glaucoma in France. J Med Econ 2009; 12(1): 9-16 [CrossRef] [PubMed] [Google Scholar]
  11. Richard JL. The MONICA project. A WHO research project in cardiovascular diseases. Rev Epidemiol Sante Publique 1988; 36(4-5): 325-34 [Google Scholar]
  12. Institut National des Statistiques et d'Etudes Economiques. Structure par âge des populations féminine et masculine. http://www.insee.fr/ [Google Scholar]
  13. Marchant I, Boissel JP, Kassai B, et al. SCORE should be preferred to Framingham to predict cardiovascular death in French population. Eur J Cardiovasc Prev Rehabil 2009; 16(5): 609-15 [CrossRef] [PubMed] [Google Scholar]
  14. Marchant I, Nony P, Cucherat M, et al. The global risk approach should be better applied in french hypertensive patients: a comparison between simulation and observation studies. PLOS One 2011; 6: e17508. doi: 10.1371/journal.pone.0017508 [CrossRef] [PubMed] [Google Scholar]
  15. Godet-Thobie H, Vernay M, Noukpoape A, et al. Mean blood pressure level and prevalence of hypertension in 18 to 74 year-old adults, ENNS Survey 2006-2007: InVS; 2008. http://www.invs.sante.fr/beh/2008/49_50/index.htm [Google Scholar]
  16. Boissel JP, Kahoul R, Amsallem E, et al. Towards personalized medicine: exploring the consequences of the effect model-based approach. Personalized Medicine 2011; 8: 581-6. http://www.futuremedicine.com/doi/abs/10.2217/pme.11.54 [CrossRef] [PubMed] [Google Scholar]
  17. Marchant I, Gueyffier F. Towards equitable strategies for hypertension management in cardiovascular prevention. Oral communication, EACPT Budapest 2011 [Google Scholar]
  18. Caro JJ. Estimation de l’intérêt de santé publique de rimonabant 20mg dans une population française de patients en surpoids ou obèse et diabétiques de type 2 non contrôlés : L’apport d’une modélisation. ALFEDIAM 2007, Marseille, 23 mars 2007 [Google Scholar]
  19. Caro JJ. Pharmacoeconomic analyses using discrete event simulation. Pharmacoeconomics 2005; 23(4): 323-32 [CrossRef] [PubMed] [Google Scholar]
  20. Cooper K, Brailsford SC, Davies R, et al. A review of health care models for coronary heart disease interventions. Health Care Manag Sci 2006; 9(4): 311-24 [CrossRef] [PubMed] [Google Scholar]
  21. Caro JJ, Möller J, Getsios D. Discrete event simulation: the preferred technique for health economic evaluations? Value in Health 2010; 13(8): 1056-60 [CrossRef] [Google Scholar]
  22. Scheen AJ, Finer N, Hollander P, et al. Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 2006; 368: 1660-72 [CrossRef] [PubMed] [Google Scholar]
  23. Boissel JP, Collet JP, Moleur P, et al. Surrogate endpoints, a basis for a rational approach. Eur J Clin Pharmacol 1992; 43: 235-44 [CrossRef] [PubMed] [Google Scholar]
  24. Gueyffier F, Dib M, Boissel JP. Marqueurs biologiques : biomarqueurs - utilisation au cours du développement et pour l'enregistrement des médicaments. Therapie 2001; 56: 355-61 [PubMed] [Google Scholar]
  25. http://www.ispor.org/workpaper/research_practices/PrinciplesofGoodPracticeforDecisionAnalyticModeling-ModelingStudies.pdf [Google Scholar]
  26. http://www.eisbm.org/include/pdf/eisbm_corporatebrochure.pdf [Google Scholar]
  27. Guide to the Methods of NICE Technolgy Appraisals, NICE, 2008. http://www.nice.org.uk [Google Scholar]
  28. http://www.eisbm.org [Google Scholar]
  29. http://mastersantepublique.univ-lyon1.fr/, spécialité PHAME (PHArmacologie, Modélisation et Essais Cliniques) [Google Scholar]